Где образуется гликоген

Содержание

Гликоген

Где образуется гликоген

Гликоген (также известный как «животный крахмал», несмотря на неточность этого названия) — полисахарид, гомополимер α-глюкозы, основная форма ее хранения в клетках животных, большинства грибов, многих бактерий и архей. В человеческом организме главными местами накопления гликогена является печень и скелетные мышцы.

Способность печени повышать концентрацию глюкозы в крови и наличие в ней крохмалеподибнои вещества, которое было названо гликогеном, была открыта в 1875 году Клодом Бернаром.

Химическое строение

Гликоген является гомополимер α-глюкозы, остатки которой соединены между собой (α1 → 4) -гликозидными связями. Каждые 8-10 мономерных остатков происходит ветвление, боковые ветви присоединены (α1 ​​→ 6) связкой. Таким образом молекула гликогена значительно более компактная и разветвленная чем крахмала. Степень полимеризации близок к таковому в амилопектина.

Все разветвления гликогена имеют нередукуючи конце, так что если количество ветвей равна n, то в молекуле будет n-1 нередукуючих концов и всего одного редуцирующего. Когда происходит гидролиз гликоген с целью использования его в качестве источника энергии, остатки глюкозы по одному отщепляются от нередукючих концов. Их большое количество позволяет существенно ускорить процесс.

Наиболее стабильной конформацией ветвей с (α1 → 4) связкой является плотная спираль с шестью остатками глюкозы на оборот (плоскость каждой молекулы возвращена на 60 ° относительно предыдущего).

Для выполнения своей биологической функции: обеспечение максимально компактного хранения глюкозы и одновременно возможности ее быстрой мобилизации, гликоген должен иметь строение оптимизированную по нескольким параметрам: 1) количеством ярусов (уровней) ветвления; 2) количеством ветвей в каждом ярусе; 3) количеством остатков глюкозы в каждой ветке.

Для молекулы гликогена с постоянным числом мономерных звеньев количество внешних ветвей, из которых может мобилизоваться глюкоза к точке ветвления, падает с ростом средней длины каждой ветви.

Плотность наиболее внешних ветвей стерически ограничено, поэтому максимальный размер молекулы гликогена уменьшается с увеличением количества ветвей на одном уровне.

Зрелые молекулы гликогена различного происхождения имеют в среднем 12 ярусов ветвления, на каждом из которых размещается в среднем по две ветви, каждая из которых содержит около 13 остатков глюкозы. Математический анализ показал, что такое строение очень близка к оптимальной для мобилизации максимального количества глюкозы за минимальное время.

Распространение и значение

Гликоген является формой запасания глюкозы у животных, грибов, некоторых бактерий (в частности цианобактерий) и АРЕХ. В микроорганизмов гликоген более или менее равномерно разбросан по цитоплазме клетки в виде гранул диаметром 20-100 нм, их обычно можно увидеть только через электронный микроскоп.

Если клетка содержит много гликогена она становится красно-коричневой при закрашивании раствором йода. У позвоночных животных наибольшие количества гликогена запасаются печенью, где он может составлять 7-10% от общей массы (100 -120 г у взрослого человека), и скелетными мышцами (1-2% от общей массы).

Небольшие количества гликогена находятся в почках, и еще меньше — в определенных глиальных клетках мозга и белых кровяных тельцах.

Запасания глюкозы не у свободной форме, а именно в виде полисахаридов диктуется двумя причинами. Во-первых, если бы, например, в гепатоците вся масса глюкозы, входит в состав гликогена, находилась в свободном состоянии, ее концентрация достигла бы 0,4 моль / л.

А это в свою очередь привело бы к значительному повышению осмотического давления цитозоля, чрезмерного поступления воды в клетку и ее разрыв. Во-вторых, такая высокая концентрация глюкозы сделала бы фактически невозможным ее активный транспорт из окружения клетки, в случае гепатоцита из крови, где уровень глюкозы составляет всего 5 ммоль / л.

Хранение же глюкозы в форме гликогена позволяет сократить ее концентрацию в клетке до 0,01 мкмоль / л.

Запасы гликогена в людей значительно меньше, чем запасы жиров.

Последние имеют ряд преимуществ: во-первых, они дают возможность получить более вдвое больше энергии, чем такая же масса углеводов, во-вторых это гидрофобные молекулы и, в отличие от углеводов, не требуют гидратации, что позволяет сократить массу энергетических запасов.

Однако гликоген является быстрым источником энергии, кроме того в организме животных отсутствуют метаболические пути превращения жирных кислот в глюкозу, а что не может использоваться мозгом и в анаэробной метаболизме мышц.

В гепатоцитах гликоген сохраняется в виде крупных цитоплазматических гранул. Элементарная так называемая β-частица, является одной молекулой гилкогену, имеет диаметр около 21 нм и включает в 55000 остатков глюкозы и имеет 2000 нередукуючих концов.

20-40 таких частиц вместе образуют α-розетки, которые можно видеть в под микроскопом в тканях животных, которых хорошо кормят. Однако они исчезают после 24-часового голодания.

Гликогена гранулы — это сложные агрегаты, в состав которых помимо самого гликогена входят ферменты, синтезируют и расщепляют его, а также регуляторные молекулы.

Гликоген в мышцах служит источником быстрой энергии как по аэробной, так и за анаэробного метаболизма. Его запасы могут быть исчерпаны за один час интенсивной физической нагрузки. Регулярная тренировка позволяет увеличить запасы гликогена в мышцах, в результате чего они могут дольше работать без усталости.

В печени гликоген является резервом глюкозы для других органов, на тот случай, если ее поступления с пищей ограничено. Особенно важен такой запас для нейронов, которые не могут использовать в качестве энергетического субстрата жирные кислоты.

Печеночный запас гликогена во время голодания исчерпывается за 12-24 часов.

Гликоген также содержится в секрете желез матки, который они выделяют в ее полость в постовуляцийний период менструального цикла после оплодотворения. Здесь полисахарид используются как источник питания для эмбриона к его имплантации.

Гликоген также поступает в организм с пищей и расщепляется в тонком кишечнике гидролитических ферментов.

Расщепление гликогена

Расщепление гликогена происходит двумя основными путями: во время пищеварения он гидролизуется до глюкозы, которая может всасываться клетками эпителия тонкого кишечника.

Внутриклеточное расщепление запасов гликогена (гликогенолиз) идет путем фосфоролиз, продуктом которого является глюкозо-1-фосфат, этот путь позволяет сохранить часть энергии гликозидных связей путем формирования фосфатного эфира.

Таким образом для включения образованной глюкозы в гликолиз или пентозофосфатный путь не нужно затрачивать АТФ. Кроме того образования глюкозо-1-фосфата выгодно для мышц, так как для этого соединения НЕТ переносчиков в плазмалемме, и она не может «бежать» из клетки.

Гидролиз гликогена во время пищеварения

У человека переваривания гликогена (как и крахмала) начинается в ротовой полости, где его действует α-амилаза слюны. Этот фермент гидролизует внутримолекулярные (α1 → 4) -связи и расщепляет полисахариды до олигосахаридов. В желудке амилаза слюны инактивируется через высокую кислотность среды.

Желудочный сок не содержит ферментов для переваривания углеводов. В двенадцатиперстной кишке на (α1 → 4) -связи гликогена действует панкреатическая α-амилаза, а на (α1 → 6) -связи — специальный дерозгалужуючий фермент амило- 1,6-гликозидаз.

Так завершается гидролиз гликогена до мальтозы, которая под влиянием пристеночного фермента тонкого кишечника мальтазы (α-глюкозидазы) превращается в глюкозу и всасывается.

Гликогенолиз

Внутриклеточный гликоген мышц и печени расщепляется в процессе гликогенолиза, в котором принимают участие три фермента: гликогенфосфорилазы, гликогендерозгалужуючий фермент и фосфоглюкомутаза.

Первый из них катализирует реакцию, в которой неорганический фосфат атакует гликозидная (α1 → 4) -связь между двумя последними остатками глюкозы с нередукуючого конца, в результате чего происходит отщепление последнего остатка в виде глюкозо-1-фосфата.

Кофактором в этой реакции выступает пиридоксальфосфат.

Гликогенфосфорилазы последовательно отщепляет по одному мономера от нередукуючого конца пока не достигает места удаленного на четыре остатки от (α1 → 6) -связи (точки ветвления). Здесь вступает в действие бифункциональный (в еукриот) дерозгалужуючий фермент.

Сначала он катализирует трансферазну реакцию, которая заключается в переносе блока из трех глюкозных остатков с ветки ближайший нередукуючий конец, к которому он прикрепляется (α1 → 4) -связью.

После этого дерозгалужуючий фермент проявляет (α1 → 6) -глюкозидазну активность, которая заключается в расщеплении (α1 → 6) -связи и выделении свободной глюкозы.

Образован глюкозо-1-фосфат превращается фосфоглюкомутаза к глюкозо-6-фосфата, который в скелетных мышцах вступает в процесс гликолиза. В печени глюкозо-6-фосфат также может транспортироваться в эндоплазматический ретикулум, там под действие глюкозо-6-фосфатазы (мышцы лишены этого фермента), превращаться в глюкозу и выделяться в кровь.

Биосинтез гликогена

В незначительной степени биосинтез гликогена (гликогенез) происходит почти во всех тканях организма, однако больше всего он выражен в печени и мышцах.

Этот процесс начинается с глюкозо-6-фосфата, образуется из глюкозы в гексокиназную или глюкокиназний реакции.

Часть глюкозы, поступающей в организм с пищей, сначала поглощается эритроцитами, которые используют ее для получения энергии в процессе молочнокислого брожения. Образованный лактат в гепатоцитах превращается в глюкозо-6-фосфата в процессе глюконеогенеза.

Метаболические пути биосинтеза и распада определенных соединений обычно отличаются крайней мере некоторыми из реакций. Метаболизм гликогена был первым открытым примером этого важного принципа. 1957 Луис Лелуар установил, что в процессе гликогенеза используется не глюкозо-1-фосфат, а уридиндифосфатглюкоза.

Глюкозо-6-фосфат сначала превращается в глюкозо-1-фосфат под влиянием фосфоглюкомутазы. Продукт этой реакции становится субстратом для фермента УДФ-глюкозофосфорилазы, которая катализирует реакцию:

Глюкозо-1-фосфат + УТФ → УДФ-глюкоза + ФФ н.

Поскольку пирофосфат сразу расщепляется неорганической пирофосфатазы, то равновесие реакции сильно смещено в сторону образования УДФ-глюкозы. Последняя является субстратом для гликогенсинтазы, что переносит остаток глюкозы на нередукуючий конец молекулы гликогена.

Образование боковых ветвей обеспечивает гилкозил- (4 → 6) -трансгликозилаза (ответвительные фермент).

Она отщепляет от ветви, содержит более 11 мономерных единиц 6-7 последних и переносит их на C6 гидроксильную группу остатка глюкозы в более внутреннем положении на той же или другой ветке.

Таким образом происходит ветвление, необходимое для лучшей растворимости гликогена, и доступа большего количества ферментов синтеза и расщепления к нередукуючих концов.

Гликогенсинтаза может синтезировать гликоген только при условии наличия праймера — готового полимера глюкозы с менее чем шестью мономерными единицами. Образование молекул гликогена de novo возможно только благодаря белку гликогенину, что выступает одновременно и «затравкой», на которой собираются новые ветви гликогена и ферментом, который катализирует начало образования наших исследований.

Гликогенез и гликогенолиз имеют сложную систему регулирования на нескольких уровнях. Многие из ферментов, участвующих в этих процессах является аллостерический и могут изменять свою активность приспосабливаясь к нуждам клетки. Количество запасов гликогена также регулируется на гормональном уровне для поддержания гомеостаза всего организма.

Клиническое значение

Нарушение обмена гликогена наблюдается при многих заболеваниях человека, в том числе при сахарном диабете. Существует также ряд наследственных расстройств, связанных с чрезмерным отложением гликогена в печени, они называются гликогенозами.

Они обычно сопровождаются выраженной гипогликемией (пониженным содержанием глюкозы в крови) между приемами пищи. Первый гликогеноз был описан в 1929 году Эдгаром фон Горькое, большой вклад в исследование этих заболеваний сделала Герти Кори.

Сейчас известно 13 форм гликогенозов, вызванных нарушениями в функционировании различных белков.

Что такое гликоген в мышцах? Нужен ли он для похудения?

Где образуется гликоген

Сегодня разберём, что это такое гликоген в мышцах, как правильно его накопить и расходовать, и зачем он вообще нам нужен? За что отвечает этот компонент?

Привет, дорогие спортсмены! С вами Светлана Морозова. Мы уже не раз разбирали, откуда во время тренировок у нас берётся энергия. И сегодня мы наконец поговорим про главную энергетическую подпитку мышц – гликоген. Поехали!

Гликоген — запасной или основной игрок?

Энергия. Она требуется нам ежесекундно, независимо от того, тягаем ли мы железо в зале или просто думаем об этом, лёжа на диване. Как вы, должно быть, помните, главный источник энергии у нас – углеводы. Все углеводы, которые мы употребляем с пищей, расщепляются до глюкозы: простые – сразу, сложные – постепенно.

Эта глюкоза вступает в реакцию с инсулином, гормоном поджелудочной железы. Инсулин «даёт добро» на её усвоение, и тогда глюкоза образует молекулы АТФ – адезинтрифосфат – наш энергетический движок. А остатки глюкозы, которые не расходуются сразу, перерабатываются и откладываются в печень и мышцы в виде гликогена.

Что происходит с гликогеном далее? Когда свободная глюкоза сделала своё дело, а энергия уже нужна (вы голодны или работаете физически), в ход идёт гликоген – снова расщепляется до глюкозы.

Особенности его мобилизации в печени в том, что здесь его депо довольно большое – 6% от всей массы печени. Отсюда он идёт на поддержание глюкозы в крови, т.е. для энергии всех органов и систем. В мышечном же депо этот компонент отвечает за работу и восстановление непосредственно мышц.

Резервуар гликогена в мышцах изначально небольшой. Он концентрируется в саркоплазме (мышечной питательной жидкости), и здесь гликогеновая концентрация всего 1% от всей массы мышц. Если сравнить с печенью, разница очень большая.

Однако при регулярных тренировках мышцы увеличиваются, и сам резервуар (саркоплазма) — тоже. Именно поэтому нетренированному человеку сложно даются те же упражнения, которые легко выполняет профессионал – просто в мышцах меньше энергии.

Гликоген в мышцах: функции

Итак, если обобщить, зачем нам нужен гликоген в мышцах:

  • Наполняет мышцы, из-за этого они выглядят упругими, подтянутыми, появляется чёткий рельеф;
  • Даёт энергию на прямые мышечные функции (растяжение, сокращение);
  • Предотвращает сгорание мышц при усиленных нагрузках;
  • Обеспечивает энергией усвоение белка – восстанавливает мышечные волокна и помогает им расти. Без углеводов мышцы не могут получить аминокислоты и построить из них мышечные волокна.

Потрачено

После того, как гликоген в мышцах заканчивается, энергию мышцы получают, расщепляя жир. Если тренировка рассчитана на похудение, как раз этого и добиваются.

Если же хотят нарастить мышцы, то тренировка строится так, что весь гликоген потратиться и не успевает. Однако, если на момент начала тренировки гликогена было недостаточно, то начинается уже распад белка – самих мышц.

Этого боятся все – и худеющие, и набирающие массу. Желаемый рельеф не только не приходит, но и вовсе «тает», восстановление мышц потом происходит долго и трудно. И сама тренировка даётся тяжелее, сил не хватает даже на привычные нагрузки.

Именно поэтому все схемы тренировок основаны на учёте гликогена. Его синтез и распад в мышечной ткани дают нам и похудеть, и мышцы нарастить. Если всё происходит вовремя.

Наверняка вы не хотите работать «вхолостую». Хотите хороший рельеф и минимум жировой прослойки, верно? А для этого нужно знать, как правильно истощать запасы гликогена, и уметь их восполнять. Это мы сейчас и разберём.

Грамотная трата

Давайте посмотрим, как правильно расходовать гликоген в мышцах, если вы хотите:

  • Похудеть. Для того, чтобы быстро сжечь жир, занимайтесь тогда, когда запасы гликогена истощены. К примеру, утром натощак или не менее, чем через 2 часа после еды. И после не торопитесь поесть. Необходимую энергию для восстановления организм будет брать в первую очередь из жира. Но пить не забывайте!

При этом время тренировки должно составлять не менее получаса. Это примерно столько, сколько требуется для истощения гликогена в мышцах. При аэробных тренировках (с усиленным доступом кислорода) процесс жиросжигания проходит легче.

Если вы выбрали интервальную тренировку, то это более энергоёмко, и 15 минут будет достаточно, чтобы в ход пошел жир. Об особенностях интервальной тренировки у меня есть отдельная статья, советую прочитать.

  • Набрать мышечную массу. В этом случае, наоборот, до начала тренировки нужно повысить уровень мышечного гликогена. Поэтому перед тренировкой стоит съесть углеводную пищу. Это должно быть что-то легко усвояемое, например, фрукт, немного каши или гейнер. Плюс лёгкие белки, вроде творога или обезжиренного йогурта. И за 2 часа до этого обязательно полноценный приём пищи.

Для набора мышечной массы обязательно в тренировочной программе должны быть и аэробные, и силовые (анаэробные) упражнения. Последние провоцируют микротравмы в миофибриллах, именно при их заживлении и растут мышцы.

Тренировка не должна быть интенсивной и длительной. Здесь важна техника, но не скорость. Нужно правильно нагружать каждую группу мышц, быстро это не получится.

Восстанавливаем растраченное

Максимальное время восстановления запасов гликогена в мышцах зависит от нескольких условий:

  • Скорость метаболизма (поэтому первоочередная задача и для похудения, и для набора массы – этот ускорить обмен веществ);
  • Длительность тренировки. Тут всё логично: чем длительнее, тем дольше восстановление;
  • Вид упражнения: после аэробных тренировок восстановление идёт быстро, до двух суток; анаэробные же требуют более длительного восстановления, может понадобиться до недели на одну группу мышц;
  • Степень тренированности человека: чем более тренирован, тем больше у него депо гликогена, помните? И тем больше времени ему потребуется для восстановления.

Поэтому отталкиваемся отдельно от конкретно своего случая. Тренировочные дни распределяем по мышечным группам: сегодня – день ног, послезавтра – день рук и груди, а в следующий раз – день спины. И получается, что каждую группу тренируют 1 раз в неделю. При особо тяжелых тренировках – даже 1 раз в 2 недели.

Восстановить гликогеновые запасы может только углеводная пища. Поэтому низкоуглеводные диеты при наборе мышечной массы – идея так себе.

Другое дело, если вы используете БУЧ – белково-углеводное чередование. Но этот способ хорош для культуристов перед конкурсами – позволяет подсушить жир и не растерять мышцы. Часто так делать не стоит.

Нормальное повседневное питание «на массу»– когда углеводы занимают 50-60% от общего количества пищи. Сложные углеводы, конечно. Каши, овощи, фрукты, злаки, отруби, цельнозерновой хлеб.

Для похудения углеводов нужно уже меньше, до 40%.

Рассчитайте, какова ваша индивидуальная норма калорий. Проще всего это сделать с помощью онлайн-калькулятора. И потом подсчитайте конкретно долю углеводов.

Надеюсь, эта статья поможет вам правильно использовать резервы гликогена для ваших целей.

Для ускорения долгожданного похудения не стоит кидаться в жесткие диеты. Попробуйте лучше Курс Активного Похудения. Жмите ссылку, смотрите фото участников, реальные здоровые результаты. И без голодовок.

Будьте здоровы и счастливы!

Делитесь статьёй в социальных сетях. И не забывайте подписываться на обновления блога.

До скорых встреч!

Что каждый спортсмен должен знать о гликогене

Где образуется гликоген
Skip to content

Наши мышечные волокна состоят из белка, но для того, чтобы накачать крупные мышцы и стать намного сильнее нужно употреблять много углеводов. Если вы этого не делаете, то очень многое теряете.

Почему? В двух словах логика такая: Основным источником энергии для мышц во время интенсивных тренировок является сложный углевод, известный под названием гликоген.

Употребление в пищу углеводов повышает уровень гликогена, что позволяет поднимать более тяжелые веса, делать больше подходов и усиленно тренироваться.

Использование более тяжелых весов, выполнение большего количества подходов и увеличение интенсивности тренировок с течением времени приводит к большему приросту силы и набору мышечной массы. И, как доказательство этой теории, есть множество примеров больших и сильных бодибилдеров и атлетов, которые употребляют большое количество углеводов.

Но есть и другое мнение.

Некоторые люди убеждены, что для мышечного роста углеводы не нужны, а только достаточное количество калорий и белков. И в доказательство приводят примеры таких же больших и сильных спортсменов, которые придерживаются низкоуглеводных диет. Кто прав? Суть вот в чем:

Если стремитесь увеличить мышечную массу и силу как можно быстрее и эффективнее, и одновременно свести к минимуму прирост жира, то необходимо поддерживать высокий уровень гликогена в мышцах. А единственный способ сделать это – употреблять большое количество углеводов.

Что такое гликоген?

Это органическое соединение (полисахарид), в форме которого углеводы хранятся в организме.

Он образуется путем связывания молекул глюкозы в цепочки длиной примерно от 8 до 12 молекул, которые затем связываются вместе, образуя крупные комки или гранулы из более, чем 50 000 молекул глюкозы.

Эти гранулы гликогена хранятся вместе с водой и калием в мышечных и печеночных клетках до тех пор, пока не появляется в них необходимость для производства энергии. Вот как выглядит гранула гликогена:

Катушка из разноцветной ленты в центре представляет собой специализированную форму белка, с помощью которого связываются все гликогеновые нити.
Гранула гликогена увеличивается по мере того, как все больше нитей прикрепляется к периферии этого ядра, и она сокращается, когда какая-то его часть используются для получения энергии.

Гликогеном называются большие пучки (связки) молекул глюкозы, которые хранятся в основном в мышцах и клетках печени.

Как образуется

Синтезом гликогена называется создание и хранение новых гликогеновых гранул.
Первоначально белки, жиры и углеводы из нашей пищи расщепляются на более мелкие молекулы. Белки разделяются на аминокислоты, жиры – на триглицериды, а углеводы — на простой сахар, называемый глюкозой.

Наш организм способен преобразовывать белки и жиры в глюкозу, но этот процесс очень неэффективен. И в результате ее количества достаточно только для поддержания основных функций организма. Это происходит только тогда, когда уровень гликогена становится очень низким.

Поэтому для получения значительного количества глюкозы эффективнее всего потреблять углеводы.

В любой момент времени в организме может циркулировать только около 4 граммов (одной чайной ложки) глюкозы в крови, и если ее уровень поднимается намного выше этого, то происходит повреждение нервов, кровеносных сосудов и других тканей. Существует несколько механизмов, чтобы предотвратить попадание глюкозы в кровоток.

Основным способом, с помощью которого организм избавляется от избыточной глюкозы, является упаковка ее в гранулы гликогена, которые затем можно безопасно откладывать в мышечные и печеночные клетки.

Когда организму требуется дополнительная энергия, он может преобразовать эти гранулы обратно в глюкозу и использовать ее в качестве топлива.

Где хранится

В основном накапливается в мышечных и печеночных клетках, хотя небольшие его количества содержатся в мозге, сердце и почках.
Внутри клетки гликоген хранится во внутриклеточной жидкости, которая называется цитозоль.
В состав цитозоля входит вода, различные витамины, минералы и другие вещества.

 Он придает клеткам структуру, накапливает питательные вещества и помогает поддерживать химические реакции.
Затем гликоген распадается на глюкозу, которая поглощается митохондриями — «энергетическими станциями» клетки.

В организме человека может храниться около 100 граммов гликогена в печени, и около 500 граммов в мышцах, хотя у людей с большой мышечной массой это количество, как правило, значительно больше.

В целом, большинство людей способно накапливать в организме около 600 граммов гликогена.

Гликоген, хранящийся в печени, используется в качестве прямого источника энергии для питания головного мозга и выполнения других функций организма.

А мышечный гликоген обычно используется мышцами во время физических нагрузок и тренировок.

Например, если выполняете приседания, то гликогеновые гранулы, хранящиеся в четырехглавых, задних мышцах бедра, ягодицах и икрах, будут расщепляться на глюкозу для энергетического обеспечения упражнения.

Продукты богатые гликогеном:

Гликоген в простонародье называют животным крахмалом. Он представляет собой запасной углевод, который производится в организме животных и человека. Его химическая формула – (C6H10O5)n.

Гликоген является соединением глюкозы, которая в виде мелких гранул откладывается в цитоплазме клеток мышц, печени, почек, а также в клетках мозга и белых кровяных тельцах.

Таким образом, гликоген представляет собой энергетический резерв, способный восполнить недостаток глюкозы, в случае отсутствия полноценного питания организма.

!

Клетки печени (гепатоциты) являются лидерами по накоплению гликогена! Они могут на 8 процентов своего веса состоять из этого вещества. При этом клетки мышц и других органов, способны накапливать гликоген в количестве не более 1 – 1,5%. У взрослых общее количество гликогена печени может достигать 100—120 грамм!

Суточная потребность организма в гликогене

По рекомендации медиков, суточная норма гликогена не должна быть ниже 100 граммов в сутки. Хотя необходимо учесть, что гликоген состоит из молекул глюкозы, и расчет может осуществляться только на взаимозависимом основании.

Потребность в гликогене возрастает:

  • В случае повышенных физических нагрузок, связанных с выполнением большого количества однообразных манипуляций. В результате этого, мышцы страдают от недостатка кровенаполнения, а также от нехватки глюкозы в крови.
  • При выполнении работ, связанных с мозговой деятельностью. В данном случае, гликоген, содержащийся в клетках мозга, быстро преобразуется в энергию, необходимую для работы. Сами же клетки, отдав накопленное, требуют пополнения запасов.
  • В случае ограниченного питания. В данном случае, организм, недополучая глюкозу из продуктов питания, начинает перерабатывать свои запасы.

Потребность в гликогене снижается:

  • При употреблении большого количества глюкозы и глюкозоподобных соединений.
  • При заболеваниях, связанных с повышенным употреблением глюкозы.
  • При болезнях печени.
  • При гликогенезах, вызванных нарушением ферментативной деятельности.

Усваиваемость гликогена

Гликоген относится к группе быстро усваиваемых углеводов, с отсрочкой к исполнению.

Данная формулировка объясняется так: до тех пор, пока в организме достаточно прочих источников энергии, гликогеновые гранулы будут храниться в нетронутом виде.

Но как только мозг подаст сигнал о недостатке энергетического обеспечения, гликоген под воздействием ферментов начинает преобразовываться в глюкозу.

Поскольку молекула гликогена представлена полисахаридом глюкозы, то его полезные свойства, а также влияние на организм соответствует свойствам глюкозы.

Гликоген является полноценным источником энергии для организма в период нехватки питательных веществ, необходим для полноценной умственной и физической деятельности.

Взаимодействие с эссенциальными элементами

Гликоген обладает способностью быстро преобразовываться в молекулы глюкозы. При этом он отлично контактирует с водой, кислородом, рибонуклеиновой (РНК), а также дезоксирибонуклеиновой (ДНК) кислотами.

Признаки нехватки гликогена в организме

  • апатия;
  • ухудшение памяти;
  • снижение мышечной массы;
  • слабый иммунитет;
  • депрессивное настроение.

Признаки избытка гликогена

  • сгущение крови;
  • нарушения функций печени;
  • проблемы с тонким кишечником;
  • увеличение массы тела.

Поскольку гликоген является внутренним источником энергии в организме, то его недостаток способен вызвать общее снижение энергетичности всего организма.

Это отражается на деятельности волосяных фолликулов, клеток кожи, а также проявляется в потере блеска глаз.

Достаточное же количество гликогена в организме, даже в период острой нехватки свободных питательных веществ, сохранит энергичность, румянец на щеках, красоту кожи и блеск волос!

Мы собрали самые важные моменты о гликогене в этой иллюстрации и будем благодарны, если вы поделитесь картинкой в социальной сети или блоге, с ссылкой на эту страницу:

Что такое синтез гликогена. Каковы функции гликогена в печени и в мышцах. Как гликоген влияет на вес

Где образуется гликоген

Гликоген – это быстромобилизуемый энергетический резерв. В гликогене хранится глюкоза. После еды организм забирает из питательных веществ столько глюкозы, сколько ему необходимо для обеспечения физической активности и умственной деятельности, а остальное сохраняет в виде гликогена в печени и мышцах.

Их он будет использовать тогда, когда придет время. Этот процесс называется синтез гликогена или просто – сахарообразование. Когда вы начинаете активную физическую деятельность, например, занятия спортом, организм начинает использовать свои запасы гликогена. Причем делает это по-умному.

Он – организм – знает, что не может полностью использовать то, что образовалось в результате синтеза гликогена, ведь в противном случае ему будет нечего использовать для быстрого восполнения энергии (представьте себе, что вы просто не в состоянии ходить или бегать, потому что у вашего тела не осталось энергии, чтобы двигаться).

Через несколько часов «без дозаправки» в виде продуктов питания, запасы гликогена оказываются исчерпаны, но нервная система продолжает настойчиво требовать его для себя. Именно поэтому возникают вялые психические и физические реакции, человеку становится трудно сосредотачиваться и реагировать на какие-либо внешние раздражители.

Есть два сценария, по которым наш организм запускает синтез гликогена. После еды, особенно продуктов с высоким содержанием углеводов, уровень глюкозы в крови повышается.

В ответ инсулин попадает в кровоток и облегчает доставку глюкозы в клетки, а также помогает синтезу гликогена. Второй механизм запускается в периоды крайнего голода или активной физической деятельности.

В обоих случаях организм истощает запас гликогена в клетках, подавая мозгу сигналы о необходимости «дозаправки».

Функции гликогена

функция гликогена – хранение энергии. Основные запасы гликогена находятся в мышцах и печени, где он одновременно и производится (из глюкозы, содержащейся в крови), и используется. Кроме того, гликоген хранится также и в красных кровяных клетках. Функция гликогена печени – обеспечивать глюкозой весь организм, функции гликогена в мышцах – обеспечивать энергией физическую активность.

Когда уровень сахара в крови снижается, вырабатывается гормон глюкагон, который превращает гликоген в источник топлива. Когда мышцы сокращаются, функция гликогена – расщепиться до глюкозы, которая будет использоваться в качестве энергии.

После физической активности организм восполнит растраченные запасы гликогена, как только вы что-нибудь съедите. Если запасы гликогена и жира истощаются, организм начинает расщеплять белки и использовать их в качестве источника топлива.

При этом человек может столкнуться с опасностью возникновения анорексии. Сердечная мышца очень богата гликогеном и для ежедневной работы получает около 25% своего топлива из глюкозы.

Без достаточного потребления продуктов, содержащих глюкозу, страдать будет, в том числе, и сердце. По этой причине у многих больных анорексией и булимией есть проблемы с сердцем.

Что происходит, если в организме слишком много глюкозы? Если все хранилища гликогена заполнены, начинается превращение глюкозы в жир.

С этой точки зрения очень важно следить за вашей диетой и не потреблять очень много сладких продуктов, углеводы которых могут быть преобразованы в глюкозу. Как только избыток сахара сохраняется в виде жира, организму требуется гораздо больше времени, чтобы сжечь его.

Любая диета, учитывающая соотношение белков, жиров и углеводов (например, умная диета для похудения), всегда крайне скупа на сахар и быстрые углеводы.

Зачем нужен гликоген в печени?

Печень – это второй по величине орган человеческого тела после кожи. Это самая тяжелая железа, у среднего взрослого человека она весит около полутора килограмм. Печень ответственна за множество жизненно важных функций, в том числе и за углеводный обмен.

Печень, по сути, является огромным фильтром, через который из желудочно-кишечного тракта проходит богатая питательными веществами кровь. И особенно сложная и важная задача этого фильтра – поддержание оптимальной концентрации глюкозы в крови.

А гликоген в печени является хранилищем глюкозы.

Основные механизмы, с помощью которых организм, обеспечивая оптимальный уровень сахара в крови, обрабатывает гликоген в печени – это липогенез, распад гликогена, глюконеогенез и превращение других сахаров в глюкозу.

Печень выступает в роли своеобразного буфера глюкозы, то есть она помогает поддерживать концентрацию глюкозы в крови близко к нормальному диапазону от 80 до 120 мг/дл (миллиграмм глюкозы на децилитр крови). Это делает печень критически важным органом, потому что как гипергликемия (повышенное содержание сахара в крови), так и гипогликемия (низкий уровень сахара в крови) могут быть опасны для организма.

Зачем нужен гликоген в мышцах

Гликоген в мышцах нужен для хранения энергии. Если добиться того, чтобы наш организм мог сохранять больше гликогена в мышцах, то в распоряжении мышц было бы больше энергии, готовой к немедленному использованию.

Это одна из задач предсезонной подготовки спортсменов. Для них важно, чтобы перед тренировкой обеспечивалось полное восстановление мышц.

Поэтому их программы питания строятся таким образом, чтобы «хранилище» гликогена в мышцах было забито до отказа.

Медицинские исследования показывают, что ключ к быстрому восстановлению гликогена в мышцах – это употребление в течение получаса после тренировки пищи и напитков с соотношением углеводы/белки примерно 4 к 1.

Тогда пищеварительные ферменты наиболее активны и приток крови к мышцам будет максимальным.

Спортсмены, которые не забывают «дозаправить» гликоген в мышцах сразу после тренировки, прежде чем пойти в душ, могут сохранить в три раза больше гликогена, чем те, кто ждет два или более часов.

Где образуется гликоген

Где образуется гликоген

ГликогенОбщиеХим. формула

КлассификацияРег. номер CAS

PubChem

Рег. номер EINECS

SMILESChEBI

ChemSpider

C₂₄H₄₂O₂₁, (C₆H₁₀O₅)ₙ
9005-79-2
439177
232-683-8
28087
388322
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Гликоге́н — полисахарид состава ( C 6 H 10 O 5)n, образованный остатками глюкозы, соединёнными связями α-1→4 (в местах разветвления — α-1→6).

В клетках животных служит основным запасным углеводом и основной формой хранения глюкозы. Откладывается в виде гранул в цитоплазме в клетках многих типов (главным образом в клетках печени и мышц).

Описание [ править | править код ]

Гликоген иногда называют животным крахмалом, так как его строение похоже на амилопектин — компонент растительного крахмала. Отличается от крахмала более разветвлённой и компактной структурой, не дает синего цвета при окраске йодом.

Гликоген образует энергетический резерв, который может быть быстро мобилизован при необходимости восполнить внезапный недостаток глюкозы. Гликогеновый запас, однако, не столь ёмок в калориях на грамм, как запас триглицеридов (жиров).

Только гликоген, запасённый в клетках печени (гепатоциты), может быть переработан в глюкозу для питания всего организма. гликогена в печени при увеличении его синтеза может составить 5-6 % от массы печени [1] . Общая масса гликогена в печени может достигать 100—120 граммов у взрослых.

В мышцах гликоген перерабатывается в глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), в то же время его общий мышечный запас может превышать запас, накопленный в гепатоцитах.

Небольшое количество гликогена обнаружено в почках, и ещё меньшее — в определённых видах клеток мозга (глиальных) и белых кровяных клетках.

В качестве запасного углевода гликоген присутствует также в клетках грибов.

Он содержится во всех клетках и тканях организма животного в двух формах: стабильный гликоген, прочно связанный в комплексе с белками, и лабильный в виде гранул, прозрачных капель в цитоплазме. [2]

При недостатке в организме глюкозы гликоген под воздействием ферментов расщепляется до глюкозы, которая поступает в кровь. Регуляция синтеза и распада гликогена осуществляется нервной системой и гормонами. Наследственные дефекты ферментов, участвующих в синтезе или расщеплении гликогена, приводят к развитию редких синдромов — гликогенозов.

Роль в спорте [ править | править код ]

Запасы гликогена в силу своей легкодоступности служат главным источником энергии для работающей мускулатуры. Однако запасы гликогена в мышцах ограничены. Результатом недостатка гликогена может быть усталость и снижение результатов, а в перспективе — ослабление иммунитета и повышение риска заболеваний [3] .

Что это за зверь такой «гликоген»? Обычно о нем вскользь упоминается в связи с углеводами, однако мало кто решает углубиться в саму суть данного вещества.

Кость Широкая решила рассказать вам все самое важное и нужное о гликогене, чтобы больше не верили в миф о том, что «сжигание жиров начинается только после 20 минуты бега». Заинтриговали?

Итак, из этой статьи вы узнаете: что такое гликоген, строение и биологическую роль, его свойства, а также формулу и структуру строения, где и для чего содержится гликоген, как происходит синтез и распад вещества, как происходит обмен, а также, какие продукты являются источником гликогена.

Нашему телу еда в первую очередь нужна как источник энергии, а уже потом, как источник удовольствия, антистрессовый щит или возможность «побаловать» себя. Как известно, энергию мы получаем из макронутриентов: жиров, белков и углеводов.

Жиры дают 9 ккал, а белки и углеводы — 4 ккал. Но не смотря на большую энергетическую ценность жиров и важную роль незаменимых аминокислот из белков важнейшими «поставщиками» энергии в наш организм являются углеводы.

Почему? Ответ прост: жиры и белки являются «медленной» формой энергии, т.к. на их ферментацию требуется определенное время, а углеводы — относительно «быстрой». Все углеводы (будь то конфета или хлеб с отрубями) в конце концов расщепляются до глюкозы, которая необходима для питания всех клеток организма.

Схема расщепления углеводов

Строение

Гликоген — это своеобразный «консервант» углеводов, другими словами, энергетические резервы организма — сохраненная про запас для последующих энергетических нужд глюкоза. Она хранится в связанном с водой состоянии. Т.е. гликоген — это «сироп» калорийностью 1-1.3 ккал/гр (при калорийности углеводов 4 ккал/г).

По сути, молекула гликогена состоит из остатков глюкозы, это запасное вещество на случай нехватки энергии в организме!

Структурная формула строения фрагмента макромолекулы гликогена (C6H10O5) выглядит схематично так:

К какому виду углеводов относится

Вообще, гликоген — это полисахарид, а значит, относится к классу «сложных» углеводов:

В каких продуктах содержится

В гликоген может пойти только углевод. Поэтому крайне важно держать в своем рационе планку углеводов не ниже 50 % от общей калорийности. Употребляя нормальный уровень углеводов (около 60% от суточного рациона) вы по максимуму сохраняете собственный гликоген и заставляете организм очень хорошо окислять углеводы.

Гликогены. Что это такое? Давайте узнаем!

Где образуется гликоген

Гликоген является сложным, комплексным углеводом, который в процессе гликогенеза образуется из глюкозы, поступающей в организм человека вместе с пищей.

С химической точки зрения он определяется формулой C6H10O5 и представляет собой коллоидальный полисахарид, имеющий сильно разветвленную цепь из остатков глюкозы.

В этой статье мы расскажем все про гликогены: что это такое, каковы их функции, где они запасаются. Также мы опишем, какие бывают отклонения в процессе их синтезирования.

Гликогены: что это и как они синтезируются?

Гликоген является необходимым организму резервом глюкозы. В организме человека он синтезируется следующим образом. Во время приема пищи углеводы (в том числе крахмал и дисахариды – лактоза, мальтоза и сахароза) под действием фермента (амилазы) расщепляются на мелкие молекулы.

Затем в тонком кишечнике такие ферменты, как сахараза, панкреатическая амилаза и мальтаза осуществляют гидролиз углеводных остатков до моносахаридов, в том числе и глюкозы. Одна часть высвобожденной глюкозы, поступив в кровоток, направляется в печень, а другая транспортируется в клетки других органов.

Непосредственно в клетках, в том числе и в мышечных, происходит последующий распад моносахарида глюкозы, который называется гликолиз.

В процессе гликолиза, происходящего с участием или без участия (аэробный и анаэробный) кислорода синтезируются молекулы АТФ, которые являются источником энергии во всех живых организмах. Но не вся глюкоза, попадающая с пищей в организм человека, расходуется на синтез АТФ.

Часть ее запасается в форме гликогена. Процесс гликогенеза предполагает полимеризацию, то есть последовательное присоединение друг к другу мономеров глюкозы и формирование полисахаридной разветвленной цепи под воздействием специальных ферментов.

Хранится полученный гликоген в виде особых гранул в цитоплазме (цитозоле) многих клеток организма. Особенно велико содержание гликогена в печени и мышечной ткани.

Причем мышечный гликоген – это источник запаса глюкозы для самой мышечной клетки (в случае сильной нагрузки), а печеночный поддерживает нормальную концентрацию глюкозы в крови.

Также запас этих сложных углеводов имеется в нервных клетках, клетках сердца, аорты, эпителиальных покровов, соединительной ткани, слизистой оболочки матки и эмбриональных тканей. Итак, мы рассмотрели, что понимается под термином “гликогены”. Что это такое, теперь понятно. Далее поговорим про их функции.

Для чего необходимы организму гликогены?

В организме гликоген служит в качестве энергетического резерва. В случае острой необходимости организм сможет получить из него недостающую глюкозу.

Как это происходит? Распад гликогена осуществляется в периодах между приемами пищи, а также значительно ускоряется во время серьезной физической работы.

Этот процесс происходит путем отщепления глюкозных остатков под воздействием особых ферментов. В итоге гликоген распадается до свободной глюкозы и глюкозо-6-фосфата без затрат АТФ.

Печень является одним важнейших внутренних органов человеческого тела. Она выполняет множество разнообразных жизненно необходимых функций. В том числе обеспечивает нормальный уровень сахара в крови, необходимый для функционирования головного мозга.

Главными механизмами, при помощи которых осуществляется поддержание глюкозы в нормальном диапазоне – от 80 до 120 мг/дл, являются липогенез с последующим распадом гликогена, глюконеогенез и трансформация других сахаров в глюкозу. При понижении уровня сахара в крови происходит активизация фосфорилазы, и тогда гликоген печени расщепляется.

Из цитоплазмы клеток исчезают его скопления, и глюкоза поступает в кровь, давая организму необходимую энергию. При повышении уровня сахара, к примеру после приема пищи, клетки печени начинают активно синтезировать гликоген и депонировать его. Глюконеогенез представляет собой процесс синтезирования печенью глюкозы из других веществ, в том числе и аминокислот.

Регуляторная функция печени делает ее критически необходимым для нормальной жизнедеятельности органа. Отклонения – значительные повышения/понижения уровня глюкозы в крови – представляют для здоровья человека серьезную опасность.

Нарушение синтеза гликогена

Нарушения обмена гликогена представляют собой группу наследственных гликогеновых заболеваний. Их причинами являются различные дефекты ферментов, непосредственно участвующих в регуляции процессов образования или расщепления гликогенов. Среди гликогеновых заболеваний выделяют гликогенозы и агликогенозы.

Первые представляют собой редкие наследственные патологии, обусловленные чрезмерным накоплением полисахарида C6H10O5 в клетках. Синтез гликогена и его последующее избыточное нахождение в печени, легких, почках, скелетных и сердечной мышцах вызываются дефектами ферментов (например, глюкоза-6-фосфатазы), участвующих в распаде гликогена.

Чаще всего при гликогенозе наблюдаются нарушения развития органов, задержка психомоторного развития, тяжелые гипогликемические состояния, вплоть до наступления комы. Для подтверждения диагноза и определения типа гликогеноза проводят биопсию печени и мышц, после чего отправляют полученный материал на гистохимическое исследование.

В ходе него устанавливают содержание гликогена в тканях, а также активность ферментов, способствующих его синтезу и распаду.

Если в организме отсуствуют гликогены, что это значит?

Агликогенозы представляют собой тяжелое наследственное заболевание, вызванное отсутствием фермента, способного осуществлять синтез гликогена (гликогенсинтетазы). При наличии данной патологии в печени полностью отсутствует гликоген.

Клинические проявления заболевания таковы: крайне низкое содержание глюкозы в крови, вследствие чего – постоянные гипогликемические судороги. Состояние больных определяется как крайне тяжелое.

Наличие агликогеноза исследуют, осуществляя биопсию печени.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.